#include <bits/stdc++.h> using namespace std; #define ms(s, n) memset(s, n, sizeof(s)) #define FOR(i, a, b) for (int i = (a); i < (b); i++) #define FORd(i, a, b) for (int i = (a) - 1; i >= (b); i--) #define FORall(it, a) for (__typeof((a).begin()) it = (a).begin(); it != (a).end(); it++) #define sz(a) int((a).size()) #define present(t, x) (t.find(x) != t.end()) #define all(a) (a).begin(), (a).end() #define uni(a) (a).erase(unique(all(a)), (a).end()) #define pb push_back #define pf push_front #define mp make_pair #define fi first #define se second #define prec(n) fixed<<setprecision(n) #define bit(n, i) (((n) >> (i)) & 1) #define bitcount(n) __builtin_popcountll(n) typedef long long ll; typedef unsigned long long ull; typedef long double ld; typedef pair<int, int> pi; typedef vector<int> vi; typedef vector<pi> vii; const int MOD = (int) 1e9 + 7; const int MOD2 = 1007681537; const int INF = (int) 1e9; const ll LINF = (ll) 1e18; const ld PI = acos((ld) -1); const ld EPS = 1e-12; inline ll gcd(ll a, ll b) {ll r; while (b) {r = a % b; a = b; b = r;} return a;} inline ll lcm(ll a, ll b) {return a / gcd(a, b) * b;} inline ll fpow(ll n, ll k, int p = MOD) {ll r = 1; for (; k; k >>= 1) {if (k & 1) r = r * n % p; n = n * n % p;} return r;} template<class T> inline int chkmin(T& a, const T& val) {return val < a ? a = val, 1 : 0;} template<class T> inline int chkmax(T& a, const T& val) {return a < val ? a = val, 1 : 0;} inline ll isqrt(ll k) {ll r = sqrt(k) + 1; while (r * r > k) r--; return r;} inline ll icbrt(ll k) {ll r = cbrt(k) + 1; while (r * r * r > k) r--; return r;} inline void addmod(int& a, int val, int p = MOD) {if ((a = (a + val)) >= p) a -= p;} inline void submod(int& a, int val, int p = MOD) {if ((a = (a - val)) < 0) a += p;} inline int mult(int a, int b, int p = MOD) {return (ll) a * b % p;} inline int inv(int a, int p = MOD) {return fpow(a, p - 2, p);} inline int sign(ld x) {return x < -EPS ? -1 : x > +EPS;} inline int sign(ld x, ld y) {return sign(x - y);} #define db(x) cerr << #x << " = " << (x) << " "; #define endln cerr << "\n"; const int maxn = 1000 + 5; int ff(int x) {return x * x;} void solve(int n, long long k) { static int g[maxn][maxn]; static int pts[maxn]; FOR(i, 0, n) fill_n(g[i], n, 0); fill_n(pts, n, 0); for (int i = 1; i < n; i += 2) { int u = i >> 1; FOR(j, 0, u) { g[i][j] = 1; pts[i]++; if (i + 1 < n) { g[j][i + 1] = 1; pts[j]++; } } FOR(j, u, i) { g[j][i] = 1; pts[j]++; if (i + 1 < n) { g[i + 1][j] = 1; pts[i + 1]++; } } if (i + 1 < n) { g[i][i + 1] = 1; pts[i]++; } } long long score = 0; FOR(i, 0, n) score += ff(pts[i]); static int used[maxn]; fill_n(used, n, 0); while (score < k) { pi best; FOR(i, 0, n) if (!used[i]) chkmax(best, mp(pts[i], i)); int u = best.se; used[u] = 1; int found = 0; FOR(i, 0, n) if (!used[i] && g[i][u]) { int dif = ff(pts[u] + 1) - ff(pts[u]) - ff(pts[i]) + ff(pts[i] - 1); if (score + dif <= k) { score += dif; g[i][u] ^= 1, g[u][i] ^= 1; pts[u]++, pts[i]--; } } } fill_n(pts, n, 0); FOR(i, 0, n) FOR(j, i + 1, n) { assert(g[i][j] + g[j][i] == 1); if (g[i][j]) { pts[i]++; } else { pts[j]++; } } score = 0; FOR(i, 0, n) score += ff(pts[i]); assert(score == k); FOR(i, 0, n) { FOR(j, 0, n) cout << g[i][j]; cout << "\n"; } } long long fmin(int n) { if (n & 1) { int d = (n - 1) / 2; return (long long) n * d * d; } else { int d = (n - 2) / 2; return ((long long) d * d + (long long) (d + 1) * (d + 1)) * n / 2; } } long long fmax(int n) { return (long long) (n - 1) * n * (2 * n - 1) / 6; } void solve() { int test; cin >> test; assert(1 <= test && test <= 100); int ntot = 0; while (test--) { int n, k; cin >> n >> k; assert(1 <= n && n <= 1000 && 1 <= k && k <= 1e9); ntot += n; if (!(fmin(n) <= k && k <= fmax(n) && (k + fmin(n) + 1 & 1))) { cout << -1 << "\n"; continue; } solve(n, k); } assert(ntot <= 1e4); } int main() { int JUDGE_ONLINE = 1; if (fopen("in.txt", "r")) { JUDGE_ONLINE = 0; assert(freopen("in.txt", "r", stdin)); assert(freopen("out.txt", "w", stdout)); } else { ios_base::sync_with_stdio(0), cin.tie(0); } solve(); if (!JUDGE_ONLINE) { //cout << "\nTime elapsed: " << 1000 * clock() / CLOCKS_PER_SEC << "ms\n"; } return 0; }